
TeamPlay
Time and Energy

Contracts

#pragma …
#pragma …

#pragma …
#pragma …

#pragma …
#pragma …

#pragma energy (…) …
#pragma time (…) …

void steer (float x,y)
{ … }

void plan (void *…)
{ … }

void control (…)
{ … }

struct point *posn()
{ … }

float bearing()
{ … }

float velocity()
{ … }

TeamPlay
Time- and Energy-Aware

Runtime System

TeamPlay
Time- and

Energy-Aware
Compiler

control:
move $1, energy
xadd $sp, -16
move $fp, $sp
…

control:
...

energy (‘control’,vel,t,...) = ...

time (‘control’,posn,dir,...) = ...

EnergyAnalyzer

energy (‘control’) = 0.24j

time (‘control’) = 0.315µs

TeamPlay Applications

• Context: parallel multicore/manycore and heterogeneous systems for mobile applications, IoT, …
• Problem: energy efficiency is critical, but no effective analyses can predict energy usage, and no

analyses allow the programmer to balance properties such as energy efficiency, time, and security.
• Goal: to effectively manage execution time, energy usage, security, and other important non-

functional properties of parallel, heterogeneous systems.

TeamPlay from the application programmer’s perspective: we propose a toolbox that treats non-
functional properties (execution time, energy usage, security, …) effectively and as first-class citizens.

Formally-verifiable and
programmable contracts,
expressed as source-level

annotations on C programs.
Contracts are specified

internally using a DSL. Implied
sub-contracts can be

determined and verified
automatically.

Industrial use cases in computer vision,
satellites, drones, medical, and

cybersecurity domains. We aim to
support the use of heterogeneous,

parallel multicore hardware in a wide
range of systems. More advanced
algorithms could thus be used on-
board, providing new autonomous
capabilities, conserving power, and

providing static guarantees regarding
non-functional properties.

Automatic static analyses
based on models of

energy usage, time, and
security, allowing these

to be determined and/or
checked automatically

and accurately.

Multi-objective optimization techniques
that balance conflicting demands on

energy, time, security etc., taking into
account the requirements of the software.

Run-time mechanisms to dynamically
enforce system-wide energy, time and

security properties. Run-time environment
is aware of system-level goals and can
enforce them by manipulating and re-

configuring the scheduling of the system’s
individual applications.

Multicore coordination.
• Multicore coordination considering energy as a primary concern
• System designer can specify complex energy constraints and

energy-related optimisation targets.
• Combines coordination, real-time scheduling, and

scheduling/coordination using sophisticated energy-specific
constraints.

Energy, timing and security contracts.
• Energy, time, security and other properties are first-class citizens, reflected

throughout the compilation, analysis, and runtime environment.
• Express energy, time, security etc. contracts formally as effectful operations,

generated from an input program in a high-level language (C), based on
information obtained using analysis/measurement techniques.

• Verify contracts through normal type checking mechanisms.

TeamPlay from a technical perspective: we propose to consider key non-functional properties such as
energy usage, time, and security systematically and at all abstraction layers, ranging from programming
language level through multi-objective optimising compilation down to the runtime system level.

Compilation and optimisation.
• Compilation and optimisation in the

context of energy, performance and
security being exposed to the programmer
as first-class citizens.

• Multi-criterial optimisations that are
systematically able to trade energy usage
with performance and security level.

• Six-dimensional optimisation space
including both average and worst-case
energy usage, execution time, and security.

Energy modelling and analysis.
• Energy usage of code determined using static

analysis combined with advanced architecture level
and resource usage modelling.

• Considers energy usage through the entire stack of
abstraction levels: hardware, compilers,
programming languages, coordination level.

• Energy transparency on multicore is addressed by
exposing energy usage effects of inter-core
communication and of interference due to accesses
to shared resources.

Security.
• Focus on side-channel attacks when

considering energy and time as an
exploitable resource.

• Precise modelling of energy and
time enables definition of security
weaknesses through all abstraction
levels.

• Automated countermeasures based
on hiding techniques adapted for
multicore systems.

TeamPlay
http://teamplay-h2020.eu This project has received funding from the European Union’s Horizon2020

research and innovation programme under grant agreement No 779882.

Time, Energy and security
Analysis for Multi/Many-core
heterogenous PLAtforms

