* X %

Time, Energy and security
Analysis for Multi/Many-core =
heterogenous PLAtforms

This project has received funding from the European Union’s Horizon2020
research and innovation programme under grant agreement No 779882.

*
*
*

TeamPlay

http://teamplay-h2020.eu

* 4 *

* Context: parallel multicore/manycore and heterogeneous systems for mobile applications, loT, ...

 Problem: energy efficiency is critical, but no effective analyses can predict energy usage, and no
analyses allow the programmer to balance properties such as energy efficiency, time, and security.

* @Goal: to effectively manage execution time, energy usage, security, and other important non-
functional properties of parallel, heterogeneous systems.

TeamPlay from the application programmer’s perspective: we propose a toolbox that treats non-
functional properties (execution time, energy usage, security, ...) effectively and as first-class citizens.

Formally-verifiable and
programmable contracts,
expressed as source-level

annotations on C programs.

Contracts are specified

internally using a DSL. Implied
sub-contracts can be
determined and verified
automatically.

void steer (float x,y)

{..}

struct point *posn()

{..}

/\ H#pragma ...

TeamPlay
Time and Energy
Contracts

#pragma energy (...) ...

void contrgP(ﬁma time (..) ..

{..}

void plan (voigw.a.‘.§ma
{..}

N\

TeamPlay
Time- and
Energy-Aware
Compiler

ragma ...

float bearigg@gMa -

#pragma ...

float veIocity()#pragma
{..}

control:
move $1, energy
xadd Ssp, -16
move $fp, Ssp

Industrial use cases in computer vision,
satellites, drones, medical, and
cybersecurity domains. We aim to
support the use of heterogeneous,
parallel multicore hardware in a wide
range of systems. More advanced
algorithms could thus be used on-
board, providing new autonomous
capabilities, conserving power, and
providing static guarantees regarding
non-functional properties.

74

TeamPlay
Time- and Energy-Aware
Runtime System

control:

energy (‘control’,vel,t,...) = ...

time (‘control’,posn,dir,...) = ...

EnergyAnalyzer Automatic static analyses

based on models of
energy usage, time, and
security, allowing these
to be determined and/or
checked automatically
and accurately.

energy (‘control’) = 0.24j

time (‘control’) = 0.315pus

Vol

Multi-objective optimization techniques
that balance conflicting demands on
energy, time, security etc., taking into

account the requirements of the software.

Run-time mechanisms to dynamically
enforce system-wide energy, time and
security properties. Run-time environment
is aware of system-level goals and can
enforce them by manipulating and re-
configuring the scheduling of the system’s
individual applications.

TeamPlay from a technical perspective: we propose to consider key non-functional properties such as
energy usage, time, and security systematically and at all abstraction layers, ranging from programming
language level through multi-objective optimising compilation down to the runtime system level.

Energy, timing and security contracts.

Multicore coordination.

* Energy, time, security and other properties are first-class citizens, reflected « Multicore coordination considering energy as a primary concern
throughout the compilation, analysis, and runtime environment. . System designer can specify complex energy constraints and

* Express energy, time, security etc. contracts formally as effectful operations, energy-related optimisation targets.
generated from an input program in a high-level language (C), based on « Combines coordination, real-time scheduling, and

information obtained using analysis/measurement techniques. scheduling/coordination using sophisticated energy-specific

* \Verify contracts through normal type checking mechanisms.

constraints.

Compilation and optimisation.

 Compilation and optimisation in the
context of energy, performance and
security being exposed to the programmer
as first-class citizens.

* Multi-criterial optimisations that are
systematically able to trade energy usage
with performance and security level.

e Six-dimensional optimisation space
including both average and worst-case
energy usage, execution time, and security.

- D,
(r22iz2 ~ ThalesAlenia

IRIDA LABS

= | A University of
BRISTOL

Energy modelling and analysis.

* Energy usage of code determined using static
analysis combined with advanced architecture level
and resource usage modelling.

* Considers energy usage through the entire stack of
abstraction levels: hardware, compilers,
programming languages, coordination level.

* Energy transparency on multicore is addressed by
exposing energy usage effects of inter-core
communication and of interference due to accesses
to shared resources.

h Ab s I n t Technische Universitat Hamburg-Harburg

&) SDU<

. rx - — UNIVERSITY OF
SHY-ANATCH SOUTHERN DENMARK

Security.

* Focus on side-channel attacks when
considering energy and time as an
exploitable resource.

* Precise modelling of energy and
time enables definition of security
weaknesses through all abstraction
levels.

 Automated countermeasures based
on hiding techniques adapted for
multicore systems.

securc ([0

X
] ol
% mvoefrs1ty
St Andrews

UNIVERSITEIT VAN AMSTERDAM

